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Abstract. A way of modelling the meanings of vague terms directly
in terms of the uncertainties they give rise to is explored. These uncer-
tainties are modelled with a probabilistic, Bayesian version of situation
semantics on which meaning is captured as the correlations between uses
of words and the types of situations those words are used to refer to. It is
argued that doing so provides a framework from which vagueness arises
naturally. It is also claimed that such a framework is in a position to
better capture the boundarylessness of vague concepts.

Keywords: Vagueness, Uncertainty, Probabilistic Semantics.

1 Introduction

A seemingly characteristic feature of vague terms is their boundarylessness [1].
However, a challenge for truth-conditional accounts of the semantics for vague
terms is that truth-conditions create sharp boundaries. One way to try to assuage
this tension is to introduce uncertainty into semantics. For example, one could
maintain a threshold for truth, but model vagueness as uncertainty about where
the threshold, in some context, lies [2] [3]. However, arguably, uncertainty over
thresholds nonetheless carves boundaries. In this paper, I will avoid thresholds
and develop a way of introducing uncertainty directly into semantic representa-
tions. On this approach, sentences are taken to encode uncertainty over types
of situations. This can been seen from two perspectives. Either as uncertainty
about how the world is, given the way words are used, or as uncertainty about
how to use words when faced with a type of situation to describe. The informa-
tion that words convey is understood as a reflection of the correlations there are
between features or properties in the world, and our uses of words to describe or
refer to objects with those properties. By adopting this view, I will suggest that
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we can better capture the boundarylessness of terms, and that borderline cases,
another characteristic feature of vagueness, emerge directly from the semantics.

In §§2-3 the uncertainty associated with vague terms will be described. In §§4-
5, these informal ideas will be modelled using a probabilistic version of situation
semantics. In §6, the approach will be linked to vagueness. In §7, the proposal
will be compared with two related proposals in the recent literature.

2 Uncertainty

There are two ways that uses of a vague term can give rise to uncertainty. The
first concerns the world and the second concerns the word. Say that we are told
that John is tall, or that Mary’s car is green. Given that we are competent in
English, and, given that we have no reason to expect what we have been told
to be incorrect, what we have been told makes it reasonable to believe certain
things about the world. In the vagueness literature, when the semantics of vague
terms are analysed, some less vague properties, concepts, or features are often
cited in the analysis. For example, with respect to ‘green’, our judgements vary
over the shades that things are; for ‘tall’, over the heights that things are; for
‘bald’, over how much (head) hair individuals have. On being told that John is
tall, or that Mary’s car is green, we are uncertain about what feature or property
John has with respect to height, or that Mary’s car has with respect to shade.

This uncertainty could be thought of as a series of graded beliefs. In the
following, I will represent the content of these beliefs with reference to measures
that may not have any psychological reality. For example, I will talk about
someone’s beliefs about heights measured in centimetres. However, it need not
be assumed that our doxastic representations of heights refer to centimetres.
If I talk of Mary’s beliefs about John’s height as distributing over heights in
centimetres, this is merely a convenient notation. It does not require that Mary
can say, in centimetres, how tall John is (or might be).

It is, however, possible that using such precise values introduces an artificial
level of precision. It could be that the way we cognitively represent the world
is also vague, in which case, there should be a mapping from vague words to a
mapping from a vague representational level to properties in the world (such as
being some height in centimetres or being some particular shade). However, by
describing mappings between vague words and less or non-vague properties in
the world directly, I am, at worst, oversimplifying the matter by skipping over a
mental/cognitive level of representation. For at least some cases we ought to be
able to describe how the information conveyed by words relates to the (more or
less) precise properties to be found in situations in the world.

It would be unreasonable to believe that John is a specific height just on the
basis of being told that he is tall, and it would be unreasonable to believe Mary’s
car to be a specific shade just on the basis of being told it is green. Herein lies
the first kind of uncertainty:

(U1) Descriptions using vague expressions leave us uncertain about specific fea-
tures/properties that objects in the world have.
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U1 uncertainty is often, to some extent, eliminable in practice. We can, for
example, go and look at John (maybe even measure him), or we can go and
have a look at Mary’s car. And yet, even if we are in command of these facts,
uncertainty about how to use our language can still remain. If John is 180cm
tall, or if Mary’s car is an odd sort of turquoisey shade, we might feel thoroughly
uncertain whether or not ‘tall’ would be an effective word to use to describe John
or ‘green’ an effective word to use to describe Mary’s car.

By using the term ‘effective’, I mean to appeal to a notion of success. What is
effective (for some purpose) is what succeeds in doing something/bringing about
the desired result. What is effective for describing John, or Mary’s car is going
to be an interest relative matter, since what is effective for doing something in
one situation may not be effective in another. A lot of the vagueness literature,
insofar as it predominantly concerns solutions to the sorites paradox, takes the
only important criterion for what is effective to be what description would be
true. However, truth is not always what we need to establish, or are interested
in. For example, if our aim is to communicate which individual John is in a
crowd, irrespective of whatever story about the truth-conditions for ‘tall’ are,
one might be able to use ‘tall’ to identify John because he is significantly taller
than those around him. Here, what makes a description count as true will not be
addressed in detail. Instead, I will continue to use the broader notion of effective
descriptions which can be used to describe a second kind of uncertainty:

(U2) Specific features/properties that objects in the world have can leave us
uncertain about how to effectively describe them.

Relations hold between U1 and U2:

1. Were we equally certain of applying ‘tall’ to 185cm John as to 190cm Bill,
then, all else being equal, we should be equally certain that John (Bill) is
185cm in height when described as tall as 190cm, and vice versa

2. Given 1, where U1 similarities give rise to U2 similarities and vice versa, we
should expect U1 differences to give rise to U2 differences and vice versa.

3. Variations in U1 uncertainty can give rise to U2 uncertainty. Being told
that John is tall may leave us uncertain about his height. We might be
fairly certain that he is not around 170cm, comparatively certain that he
is around 190cm, but highly uncertain about whether he is around 180cm.
Given 1 and 2, this creates U2 uncertainty in the use of ‘tall’. If we are
fairly certain that ‘tall’ effectively describes someone who is around 190cm
in height, but fairly certain that ‘tall’ wouldn’t effectively describe someone
around 170cm in height, then we should uncertain that ‘tall’ would effectively
describe someone around 180cm. Furthermore, we should also expect a range
of U2 judgements to give rise to U1 uncertainty.

As emphasised by an anonymous reviewer, the presence of U1 uncertainty
is not sufficient for vagueness, and the presence of U2 uncertainty is not nec-
essary for vagueness. The relationship between vagueness and different kinds of
uncertainty will be made clear in §6. In brief, however, there will be times when,
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given the way the uses of words correlate with types of situations, nothing in the
meanings of the words themselves, or any outside information, will be able to
resolve our uncertainty. For example, for some heights of people, we may have
irresolvable uncertainty about whether to call them tall. This can arise because
when someone is described as tall, we may be no more certain that they are that
height than we would be were they to be described as not tall.

Two challenges arise for communicating with vague expressions. As a hearer,
we must face uncertainty over what objects in the world are like, given the way
they have been described. As speakers, we may, from time to time, face uncer-
tainty over how to effectively describe things as being. However, arguably this
uncertainty stems directly from the uses of such terms, and from how such uses
correlate with the properties of situations those words describe or refer to. In the
following, I will treat the strengths of these correlations as the information that
those terms carry.1 This information will be modelled using Bayesian conditional
probabilities. It is in this sense that Bayesian notions will be at the heart of the
semantics for vague terms.

3 Constituents

A semantics based on uncertainty will have to be able to attribute, to types
of expression, a role in the larger constructions in which they occur. Take our
above examples: ‘John is tall’ and ‘Mary’s car is green’. Giving a semantics for
the modifiers ‘tall’ and ‘green’ can then be taken to be a matter of accounting
for what information they carry about some object. For example, ‘x is green’
might be modelled as making it reasonable to believe that x is one of some rough
range of shades.

However, here a disparity between ‘tall’ and ‘green’ arises. The x in ‘x is tall’
is vital for getting any idea about what it is reasonable to believe. If we are only
told that something, anything, is tall, be it a mountain, a molehill, a mouse, or a
millipede, there is no height it would be more reasonable to believe this thing is
than others.2 This changes as soon as ‘tall’ is predicated of an NP or is applied to
a CN in an NP: The ‘tall’ in ‘x is a tall man’ seems to make it more reasonable to
believe that x is some heights rather than others. But this suggests that part of
the information which contributes to our expectations of heights is coming from
the CN/predicate ‘man’. This can be seen by substitution of CNs/predicates.3

Compare how expectations of heights differ for ‘x is a tall man’, ‘x is a tall

1 This notion of semantic information is more rigorously developed in [4].
2 This may be to strong. There could be some priors we have, or reasoning we could

engage in, that would make some heights more reasonable than others. My thanks
go to Noah Goodman for helpful discussion.

3 I do not mean to take, as assumed, a clear, semantically important division between
CNs and adjectives. Below, I will treat words like ‘tall’ and ‘green’ as predicate
modifiers and words like ‘car’ and ‘man’ as as predicates. In many cases, the tradi-
tional classifications of words as CNs and adjectives will overlap with these semantic
divisions. Nothing I say rests on whether they all do.
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molehill’ and ‘x is a tall mountain’. The situation for green seems to be similar.
CNs make a difference to expectations.4 However, ‘x is green’ does seem to carry
some expectations of its own: that x is roughly within some range of shades.

I take this to be a reason to see some differences in the semantics of various
vague adjectives/modifiers. The modifier ‘green’, which seems to carry informa-
tion on its own, will have a slightly different semantic shape to those modifiers
(such as ‘tall’) that only seem to modify expectations based on information car-
ried by nominal predicates. The details of this difference will be elaborated in
§5.

What we have here is an argument for treating some modifiers as, in some
sense, not really carrying information per se. Instead we can see them as encod-
ing a modification on the information carried by a nominal predicate. Someone’s
being described as a woman gives us a rough expectation as to her height. This
may be a very broad range, but we have some expectations nonetheless. Some-
thing’s being described as a skyscraper gives us very different expectations as to
its height.

One might worry that this puts a lot of weight on information carried by
nominal predicates and/or background information and beliefs. However, all that
is being assumed is that learning to categorise and classify objects with such
predicates, in part, amounts to developing expectations as to basic visual cues
such as size, shape and shade. An anonymous reviewer rightly points out that
this approach begins to blur the boundaries between what counts as meaning
and what counts as general knowledge about the world. A firmer distinction can
be established again without overly affecting the account, however. Rather that
seeing the meaning of, say, ‘man’ as being all the information one has learnt
about men, we can view meanings as procedures (see [6]) for accessing such
knowledge and for determining the ways such knowledge should be combined.

The common modifiers ‘old’, ‘big’ and ‘long’, just like ‘tall’, only seem to
give us reasonable expectations when applied to a nominal predicate (or when
themselves predicated of an NP in cases such as ‘John is tall’). In turn, however,
that suggests that nominal predicates such as ‘man’ carry information about
what features men can reasonably be expected to have. Some tests (albeit ones
based on linguistic intuitions) can be applied to get a grasp on what information
this is. For example, at least for non-metaphorical uses, ‘x is a long man’ does
not seem to make much sense/provide us with reasonable expectations about
x’s length.5 This suggests that ‘man’ does not carry information pertaining to
length. This is not to say that modifiers such as ‘green’ are not restricted either.
For example, synaesthesia aside, ‘x has green ideas’ is hard to understand if
‘green’ relates to shade.6

4 This point is related to the commonly held idea that vague adjectives are context-
sensitive or interpretable only relative to a comparison class [5].

5 In English at least, length is not simply a euphemism for height. Trains, passageways,
halls, to name a few, can have a great length without having a great height.

6 An interesting possibility is that the application of domain specific modifiers to
NPs that do not carry information about that domain will generate metaphorical
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Nominal predicates will be treated as encoding information based on corre-
lations between things that those common nouns are used to classify and the
features that the things they are used to classify have. For example, it is because
there is a stronger correlation between men and some heights than there is with
others, that ‘man’ carries information about heights. Adjectives will be modelled
as modulating some specific aspect of the information that nominal predicates
carry. For example, ‘tall’ will modify information relating to height carried by
predicates like ‘man’.

A possible worry can be flagged here.7 In the literature on adjectives, it
is common to appeal to a comparison class to capture their semantics [5], [8],
[9], [10]. However, it has been pointed out that common nouns do not always
determine comparison classes [11]. For example, BMWs are not the comparison
class below, despite featuring as part of a modified NP:

1. Kyle’s car is an expensive BMW, though it’s not expensive for a BMW. In
fact it’s the least expensive model they make. [11]

The worry concerns whether the above analysis conflates modified nouns with
comparison classes. The analysis can, however be modified slightly. Rather than
demand of some adjectives that they simply modify a nominal predicate, we can
instead require that there is some class of things to which it is being applied in
any context (information about which can be modified by the adjective). This
still leaves a difference with terms like ‘red’ which seem to carry some information
(about, say, shades) independently of a lexically provided nominal predicate or
a comparison class.8

4 Semantics: Preliminaries

4.1 Correlations and Situations

In the following, I will suggest one way to formalise U1 uncertainty (uncertainty
over how the world is, given a description of it). I will borrow heavily from
situation semantics [12], [13], [14], but will incorporate a probabilistic element
into the standard determinate theory.

In situation theory, meaning is captured via the notion of constraints. Con-
straints represent information channels, for example, types of situations in which
there is rain in the city are informationally connected to types of situation in
which the pavements are wet. The (context independent) linguistic meaning of

interpretations. Metaphor, humour and other such subjects are outside of the scope
of this paper. There may also be an interesting link to be explored between the ideas
put forward here and work done on scalar adjectives in [7].

7 This was pointed out by an anonymous reviewer for the BNLSP 2013 Workshop.
8 That is not to say that ‘red’ cannot relate to non-stereotypical shades (such as in

‘red onion’). Elsewhere [4], I suggest a way for this account to model the information
carried by ‘pet fish’ where goldfish are not the most stereotypical fish, nor the most
stereotypical pets.
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an expression is, held to be just a special case of a normal information channel:
types of situation in which some expression is uttered are informationally related
to types of situations in which some conditions obtain. For example, types of
situations in which someone utters ‘It’s raining in London’ are informationally
connected to types of situations in which there is rain in (at least part of) London
(at some time).

It is via this type-type link or relation that agents are able to extract token-
token information. For the case in hand, if one is in a token discourse situation
of the type ‘It’s raining in London’ is uttered, one will be led to expect a token
situation of the type raining in London. In standard situation semantics, ignoring
a lot of details, the truth of what is said turns on whether the token described
situation is of the right type.

The basic idea to be presented in this paper is that meaning can be treated as
correlational. Instead of constraints holding between one utterance situation type
and one described situation type, probability theory will be employed to capture
different strengths of connections between an utterance situation type, and many
described situation types. The meanings of expressions are therefore held to
be correlations between discourse situations of a certain type, and described
situations of a certain type. For example, the type of situation in which ‘John is
tall’ is uttered will be correlated, to different extents, with types of situation in
which John is one of many possible heights.

In Situation Theory, situations support infons. Infons are traditionally con-
ceived as what contribute to forming informational items [14], or as types of
situations [13].9 Another way to view them is as properties of situations (as op-
posed to properties of individuals). For example, (ignoring times) one property
that a situation might have is where it’s raining somewhere:10

〈〈rain, l̇, yes〉〉

The l̇ is a location parameter. Parameters can be seen as akin to variables.
They can be bound via type abstraction (see below), or free. Ignoring quanti-
fiers, free parameters are those not bound by abstraction in situation theoretic
propositions. If a situation, s has some property (some infon), σ, then it is said
that the situation supports the infon. That a situation supports an infon, in
notation, is a situation theoretic proposition:

s � σ

For the above infon, this would give:

s � 〈〈rain, l̇, yes〉〉
9 This way of viewing infons (as types) propagates through into situation theoretic

approaches with richer type systems. See, for example [15].
10 This notation for infons is essentially Devlins. However, for polarities, I adopt Bar-

wise and Perry’s ‘yes’ and ‘no’ instead of Devlin’s ‘1’, ‘0’. This is to avoid potential
confusion with the limit cases of probability values [0, 1].
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Which says that in situation s, it is raining at some location. Situations are
meant to be ways to classify objects and events in the world. They are not
possible worlds. If a situation, in fact, has the property σ (is, in fact, of type
σ/supports σ), then the proposition is true. However, we will not be seeking
to associate linguistic expressions with propositions, nor will we be directly in-
terested in particular situations and whether they support some infon. This is
because constraints are defined between situation types.

Importantly, abstraction in situation theory allows one to talk about types.
Abstracting over objects (understood loosely as individuals, locations, and times),
creates object types. Taking our rain example, and abstracting over l̇, this gives:

λ[l̇](s � 〈〈rain, l̇, yes〉〉)

Which is the type of locations in which it rains in situation s. When bound,
parameters can be replaced with constants as with standard β-reduction. For
example:

λ[l̇](s � 〈〈rain, l̇, yes〉〉) . [London]

⇒ s � 〈〈rain, London, yes〉〉

Situations can be abstracted over to give situation types11 via situation type
abstraction. Notation varies, I will adopt the following:12

λ[ṡ](ṡ � σ)

This means the type of situation in which σ obtains. The ṡ is a parameter, as l̇
above, but ṡ is a parameter for situations. In this case, ṡ is bound. For example:

λ[ṡ](ṡ � 〈〈rain, London, yes〉〉)

Which is the type of situation in which it rains in London. Correlations (informa-
tion channels) hold between types. For example the above type might correlate
with the type of situation in which the streets of London are wet. In the prob-
abilistic version of Situation Theory to be developed, these correlations will be
modelled as conditional probabilities (the probability of one type, given another).
It is this that will ensure that if some concrete situation of a type arises, there
will be a probability that some situation of another type will arise (or, arose, or
will have arisen etc.).

The proposal to be made here is then that U1 uncertainty (where descriptions
using vague expressions leave us uncertain about specific features/properties that

11 More recent situation theoretic approaches take types to be objects. An example of
this rich type-theoretic approach is Type Theory with Records (TTR) [15].

12 This is close to Devlin’s notation, but with Cooper’s use of ‘λ’ for abstractions
instead of Devlin’s (ṡ|ṡ � σ). This variation is to avoid possible confusion resulting
from the use of ‘|’ in probability theory.
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objects in the world have), can be modelled as conditional probabilities between
types of situation. I will say more on U2 probability in §7.

We will have situations of two kinds:

(i) Discourse situations, d, are situations in which some specific discourse takes
place. For example, we might have the discourse situation in which ‘red’ is
used to classify some object, or, in which ‘tall’ is used to describe some per-
son. Discourse situations will model the situations in which certain words
are used (certain things are said).

(ii) Described situations, s, are situations in which the world is some way.
For example, we might have the described situation in which an object is
some shade of colour, or, in which a person is 180cm in height. Described
situations will model the kinds of ways the world can be.

Types can be formed by abstracting over discourse and described situations.
For example:

λ[ḋ](ḋ � 〈〈utters, ȧ,TALL, j, yes〉〉)

Is the type of situation in which someone describes John as ‘tall’. Given such a
type, there will be a probability of some described situation being of some type.
For example, the type of described situation in which John is 180cm in height:

λ[ṡ](ṡ � 〈〈height=180cm, j, yes〉〉)

Varying probabilities will result from different height values. These probabilities
will form a distribution. Abstracting away from the contribution made by the
name ‘John’, this distribution will reflect the extent to which uses of the modifier
‘tall’ to describe, say, a human male, correlates with human males being certain
heights. The heights that an agent will entertain will be restricted by their
learning process (namely, an approximation over the kinds of humans, males
etc. that they have experienced). It will be supposed that a rational agent can
only have distributions that sum to 1.

The information carried by sentences will be captured as the conditional
probability of there being a described situation of some type, given a discourse
situation of some type. For example, the probability of there being a situation
type in which John is 5ft, given a situation type in which John is described as tall,
will be (comparatively) very low.13 Other conditional probabilities will be greater
for greater height properties John might have. A range of such probabilities
(each with a different height property/one-place relation assigned to John in the
described situation) will form a distribution (must sum to one).

Conditional probability values will represent something like credence. How-
ever, rather than just a degree of belief, we will be concerned with the degree to

13 This can be so even given the assumption that speakers are not being deliberately
deceptive. What is being tracked here is the extent to which, in general, properties
such as heights of individuals correlate with types of utterances, such as describing
them as tall.
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which it is reasonable to believe that some state of affairs obtains. This distinc-
tion is between what, given some actual description, a hearer believes (credence),
and what, in virtue of the information carried by the utterance of the words, one
is entitled to believe. Conditional probability values reflect correlations between
uses of words and states of affairs. This incorporates all uses, both representa-
tions and misrepresentations of the world. The degree to which it is reasonable
that some state of affairs obtains reflects this. How much reason or entitlement
one has to believe the world to be some way will be a direct reflection of how
words are used (how uses of words correlate with types of situations).

So, if being told that John is tall makes it reasonable to believe to a degree
of n that he is 180cm in height, this will be represented as assigning a proba-
bility value of n to the conditional probability of there being a situation of the
type in which John is 180cm in height, given a situation of the type in which
he is described as tall. The value for n, against another larger number, repre-
sents a lower reasonable credence in a state of affairs than the higher number.
Conditional probability distributions will be formed over a range of heights.

Types and Situation Types A more recent approach to situation theoretic
semantics is systematically laid out in [15] which adopts a rich proof theoretic
type theory. Rather than treating types as sets of objects in a domain, this ap-
proach treats types as objects (in a domain of types). Situations/events then act
as proofs of propositions. In what is to follow, I will adopt a fairly simple type
theory with an, essentially, model theoretic semantics.14 This simplification will
make it easier to focus on the probabilistic element in my account. A proof theo-
retic approach with a richer type theory could, in principle, adopt the core ideas
in the proposal that I will make. Indeed, a probabilistic approach comparable to
my own has just been proposed in [16].15

Properties It is important to note that it is not assumed that there is anything
like the property green or the property tall that individuals have or lack. We
will be assuming that individuals can have the property of being some height
(this will just be the height that they are). We will also be assuming that certain
objects have some hue or shade.16 These heights and shade properties will be
mentioned in the formalism as properties of objects in infons.

14 The hedging here is included because, although I assume a domain of situations (as
a set), situations are best not viewed as a set.

15 A difference between this, my own, and similar proposals will be explained in §7.
16 I assume for simplicity that these properties are not vague. Nothing turns on this

however. Even if properties were vague in the sense that someone may genuinely be
of indeterminate (exact) height, one would still need to explain how words like ‘tall’
admit of wide ranges of those properties in a graded way.
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4.2 Definitions

Types The type system that will be used will have three basic types.17 Type e
will be the standard type for individuals (entities). Type s will be the type for
situation. Rather than the traditional type t (for truth value), we will have type
p (for probability). Basic types can be used to form functional types in the way
normal to model theory.

Definition 1: Types
Basic types: {e, p, s}
Functional types: If a, b are types, then 〈a, b〉 is a type.

Expressions This formalism brings together notions from both probability the-
ory and situation theory. As such, we will need to define how various parts of
them interact. The vocabulary of the formalism is in Definition 1. Where neces-
sary, types of expressions will be given as subscripts. For example, a variable, S,
of type 〈e, p〉 will be written S〈e,p〉. The marking of numerical variables as type
p in Definition 1 is an oversimplification. These will be interpreted as numeri-
cal normalising values. These values can have a value outside of [0, 1], but are
derivable from sums of values of interpretations of other type p expressions.

Definition 1: Vocabulary
Parameters (PAR): infinite set of parameters for all types ṡ1, ..., ḋ1, ..., ẋ, ...
Constants (CON): a possibly empty set of constants for every type.
Supports: �
Conditional on: |
Infons: σ, τ , 〈〈height=h, j, yes〉〉, 〈〈utters, a,TALL, j, no〉〉
Connectives: ∧,¬,∨
Lambda abstraction operator: λ
Mathematical Operators: ×,+,−
Numerical Variables: C,C′ of type 〈p〉
Brackets: ( , ), [ , ]

A further few remarks on infons are needed at this juncture. Infons contain
relations between objects and the polarities in infons ‘yes’ and ‘no’ indicate
whether the relation holds between the objects. I assume a basic ontology of
relations (such as being some height or being some shade). Propositions state
that situations support infons. Positive polarities on infons indicate that any
situation that supports the infon is of that type. A negative polarity would
indicate that the situation is of the negative type. Infons can thus be understood

17 I will from now on suppress all reference to locations and times, which are also types
in situation theory.
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as types of situations [13], or perhaps as properties of situations. The class of
infons will be formed of all possible combinations of relations and objects in our
ontology (plus a polarity).

The well-formed expressions of the language are defined in Definition 2 (where
WEa denotes well formed expressions of type a). Clauses (i), (ii), (iv) and (v)
are standard. Clause (v) introduces the syntax for situation types. Clause (vi)
gives what will eventually be interpreted as a conditional probability of one
situation type given another. The connectives in clause (vii) will be discussed in
greater detail below. Clause (viii) allows for expressions of type p to be linked
by mathematical connectives.

Definition 2: Well-Formed Expressions:

(i) If α ∈ PARa, then α ∈WEa,
(ii) If α ∈ CONa, then α ∈WEa,

(iii) If α ∈WE〈a,b〉 and β ∈WEa, then α(β) ∈WEb,
(iv) If α ∈WEb, and β ∈WEa, then λ[β](α) ∈WE〈a,b〉,
(v) If α ∈WEs, and if σ is an infon, then λ[α](α � σ) ∈WEp,

(vi) If φ, ψ ∈WEp, then φ | ψ ∈WEp,
(vii) If φ, ψ ∈WEp, then:

(a) ¬φ ∈WEp,
(b) φ ∧ ψ ∈WEp,
(c) φ ∨ ψ ∈WEp,

(viii) If φ, ψ ∈WEp, then
(a) φ× ψ ∈WEp,
(b) φ+ ψ ∈WEp,
(c) φ− ψ ∈WEp,

As mentioned briefly earlier, there are two kinds of situation parameters that
we will use: described situations (ṡ) and discourse situations (ḋ). For descriptive
situation types, we will be interested in how the world is with respect to things
like the shades things are (for colour terms), and the heights things are (for terms
like ‘tall’). In discourse situation types, what will be described is the production
of some utterance type.

The infons we will be concerned with are likewise of two kinds. Infons for
descriptive situations will describe/be about, say, what height someone is. Im-
mediately below I specify the infon, and below that, I give a described situation
type including that infon:

〈〈height=180cm, j, yes〉〉

λ[ṡ](ṡ � 〈〈height=180cm, j, yes〉〉)

The latter is the type of situation in which the individual denoted by j (say,
John) is 180 cm in height. Infons for descriptive situation types will typically
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relate to what has been said. For example, below, I specify a discourse infon,
followed by a discourse situation type including that infon:

〈〈utters, ȧ,TALL, j, yes〉〉

λ[ḋ](ḋ � 〈〈utters, ȧ,TALL, j, yes〉〉)

The latter is the type of situation in which the individual denoted by j (say,
John) has been described as tall. This is a simplification, however. In actual
fact, there ought to be unbound parameters for locations and times etc. which
are being suppressed for simplicity.

For either of these situation types (descriptive and discourse), many actual
situations could be of those types (types where John is 180 cm in height, or
where he is described using ‘tall’).

Interpretations and Domains The interpretation function we shall use will
be marked as: p(·). Hence, an expression φ of type p, will be interpreted as
p(φ), or the probability of φ. Like interpretation functions in model theory, the
interpretations of type p expressions will be built up of the interpretations of
other expressions. I assume a domain for each basic type. If a is a basic type:

p(α〈a〉) ∈ Dom〈a〉

Functionally typed expressions will be interpreted as functions from basic do-
mains:

p(α〈a,b〉) ∈ Dom
Dom〈a〉
〈b〉

The type e domain will be a set of individuals. The domain of type p will be
the range [0, 1]. Situations are being taken as primitive. We can, for the sake of
the formalism, assume a domain of situations. However, in the spirit of situation
theory, situations should be taken to be our ways of conceptualising and carving
up the world into parts. As well as the interpretation function, we will have
a parameter anchoring function g, which assigns appropriate members of the
domain to parameters. In situation theory, parameter anchoring functions have
restrictions on their domains, I will pass over those details here.

The first four clauses of Definition 3 are fairly standard. Clause (v) simply
states that maths operators in the object language are treated as standard when
the interpretations of their operands are in the range [0, 1]. Clause (vi) simply
states the standard definitions of probabilistic connectives [17].

Spaces and Priors In order for these axioms and the probability function to
be well defined, we must define a probability space. Probabilities will distribute
over situation types. The probability value will be in the range [0, 1] where this
value indicates the probability of some situation being of the type specified by
the infon. Conditional probabilities will be the probability of a situation being
of some type, given that some situation is of another type. For simplicity, for
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Definition 3: Denotations

(i) p(ẋ)g = g(x) if ẋ ∈ PAR,
(ii) p(c)g = p(c) if c ∈ CON ,
(iii) p(α(β))g = p(α)g(p(β)g),
(iv) p(λ[ẋ](α))g = f such that if ẋ ∈ PARa, and c ∈ Doma, f(c) = p(α)g[ẋ:=c],
(v) Maths Operators:

(a) p(φ× ψ)g = p(φ)g × p(ψ)g,
(b) p(φ+ ψ)g = p(φ)g + p(ψ)g,
(c) p(φ− ψ)g = p(φ)g − p(ψ)g,

(vi) Probabilistic Connectives:
(a) p(¬φ)g = 1− p(φ)g,
(b) p(φ ∧ ψ)g = p(φ)g × p(ψ | φ)g,
(c) p(φ ∨ ψ)g = p(φ)g + p(ψ)g − p(φ ∧ ψ)g.

all non-conditional values, I assume that probabilities distribute evenly.18 For
example, in the case where we have n discrete ranges of heights over which a
distribution will be formed, the values for each unconditional situation type will
be:

p(λ[ṡ](ṡ � 〈〈height=h, ẋ, yes〉〉)g =
1

n

In practice, the range of situations and infons will be highly constrained. For
described situations, constraints will come out of the semantic learning process,
as well as the goals and purposes of the speakers. For example, certain ranges of
shade/hue properties will constrain the range of described situations for colour
terms in general, but further constraints may come from what objects are salient
to speaker and hearer in the situation of utterance.

For discourse situations, I assume a space of two infons, formed of the same
relation and object but with opposing polarities.

p(λ[ḋ](ḋ � 〈〈R, a1, ...an, yes〉〉))g = 0.5 = p(λ[ḋ](ḋ � 〈〈R, a1, ...an, no〉〉))g

However, when multiple terms are used, the space of possibilities may be bigger
and so values may be lower.

Representationalism The formal semantics and linguistics debate over repre-
sentationalism got going with the publication of work on Discourse Representa-
tion Theory (DRT) [18]. DRT questioned Montague’s claim that the represen-
tational language of a formalism is dispensable. In DRT, it was claimed that to
account for the treatment of some expressions (such as discourse anaphora), the

18 In a more sophisticated model, one would wish the values of priors to be set in accor-
dance with the learning experiences of agents. One way this has been implemented
will be discussed in §7.2.
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representational (interpretational) level is not dispensable. Non-representational,
dynamic accounts were developed in response. The debate was never entirely set-
tled, but I do not need to take up a position.

Linguistic Meaning In standard situation semantics, linguistic meaning is
captured by way of constraints. For example, the linguistic meaning of ‘Mary is
tall’ will be a link between an utterance situation type in which an utterance
of ‘Mary is tall’ is made, and a described situation type in which Mary is tall.
The introduction of probabilities into the situation theoretic framework, can be
understood as the loosening of the strength of this link. Rather than taking an
utterance of ‘Mary is tall’ to convey information in such a way as to give us
the expectation that in some described situation Mary is tall, probabilistic con-
straints will hold between utterance situation types and a number of described
situation types. In each of the described situation types, Mary will be some
particular height, however, the strength with which we should expect Mary to
be that height, given that she has been described as tall will vary. This uncer-
tainty will be captured formally as a conditional probability distribution. For
the example in hand this will be the following:

p(λ[ṡ](ṡ � 〈〈height=h, m, yes〉〉) | λ[ḋ](ḋ � 〈〈Utters, ȧ,TALL, m, yes〉〉))g

The above formula will return probability values for different values of heights
h. Put simply, given a type of situation in which Mary is described as tall,
one should assign a greater probability to the described situation being one in
which Mary is some heights rather than others. However, these values will be
determined by more general correlations in which, say, people are described as
tall and where people are some height or other (the details of this will emerge in
the compositional semantics). The standard way we will represent and interpret
declarative sentences will therefore be as a conditional probability formed with
a described situation type and a discourse situation type where the resultant
probability distribution describes the constraints that the words used in the
utterance situation place on the described situation:

p(λ[ṡ](ṡ � τ) | λ[ḋ](ḋ � σ))g

For different infons substituted for τ , values will be in the range [0, 1]. These
values will form a distribution. Returning to our example of ‘Mary is tall’, using
some made-up values, the sentence could be interpreted as in Table 1. In §5, I
will describe how such a sentence can be composed.

5 Semantics: Terms

5.1 Predicates

Since nominal predicates were argued to be important for the semantics of vague
adjectives/modifiers (as the things bearing the information that they modify),
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Table 1. Interpretation of ‘Mary is tall’

h (cm) p(λ[ṡ](ṡ � 〈〈height=h, m, yes〉〉) | λ[ḋ](ḋ � 〈〈Utters, ȧ,TALL, m, yes〉〉))
h < 150 0.01

150 ≤ h < 155 0.01
155 ≤ h < 160 0.01
160 ≤ h < 165 0.01
165 ≤ h < 170 0.01
170 ≤ h < 175 0.02
175 ≤ h < 180 0.06
180 ≤ h < 185 0.11
185 ≤ h < 190 0.22
190 ≤ h < 195 0.32

h > 195 0.22

we will now turn to them. As suggested in §3, nominal predicates may carry a lot
of different information. Our basic semantic representation for such predicates
will incorporate an argument the domain of which will be a selection of a type of
information (such as a range of heights). This information type will be supplied
either by context, or by a modifier, such as an adjective. In a departure from
a simple view of predicates (that take just an object as an argument), nominal
predicates will be modelled as a function from properties to a function from an
individual to a probability, which is to say that they will be a function from
properties to properties (〈e, p〉, 〈e, p〉). The logical structure of nominal expres-
sions will be such that two entities in the above will be the same. Put another
way, singular nominal predicates are assumed to require updating in context
with respect to the aspect of the information they carry (via an argument of
type 〈e, p〉). Then, when provided with an individual (a type e argument), yield
a value for the probability of that individual having that property, given the
information provided. The schema for ‘man’ (and with appropriate substitution,
other predicates) is:

Man : λ[Ṡ](λ[ẋ](Ṡ . [ẋ] | λ[ḋ](ḋ � 〈〈Utters, ȧ,MAN, ẋ, yes〉〉)))〈e,p〉,〈e,p〉

ẋ, ẏ := Parameters for individuals (〈e〉)
Ṡ, Ṙ := Parameters of functional type 〈e, p〉

e.g. λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉))

To get the information carried by ‘is a man’ with respect to the having of some
property, we need to provide a property a man might have. Such a property (or
range of properties) may be provided by the context. Below, however, we will
see how part of the semantic contribution of predicate modifiers is to provide
such a property (such a range of properties).
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Because nominal predicates are functions from properties of described situa-
tion types to a function from individuals to a probability, a worry over tractabil-
ity and learnability arises. If an agent needs to learn all distributions that arise
from interpreting ‘x is a man’ constructions, this would not be a tractable learn-
ing task. However, probabilistic learning affords a solution. We can assume that
agents begin classifier learning tasks with flat prior distributions for all collec-
tions of properties. On being exposed to uses of a classifier, distributions will be
adjusted for just those properties the objects are perceived to have. In this sense,
if one has no reasonable expectations regarding some range of situations, given
what has been said, simply because no one situation type is more plausible than
another, then it is possible that the classifier used does not carry information
about (the properties in) those situations.19

One property a man might have is of being a certain height. For example, he
might be 180cm in height:

λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉))

This kind of property can be applied to our representation of the predicate ‘man’:

λ[Ṡ](λ[ẋ](Ṡ . [ẋ] | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉) .
[λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉)]

⇒λ[ẋ](λ[ẏ](λ[ṡ](ṡ � 〈〈height=180cm, ẏ, yes〉〉) . [ẋ] |
λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)))

⇒λ[ẋ](λ[ṡ](ṡ � 〈〈height=180cm, ẋ, yes〉〉 | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)

This is now in the right shape to take an individual as an argument which
will be described as a man in ḋ and assigned the height property in ṡ. Assuming
(as a simplification) that names refer and carry no other information, this means
that ‘John is a man’ can be represented, with respect to being 180cm in height,
as follows:20

λ[ṡ](ṡ � 〈〈height=180cm, j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, j, yes〉〉)

The interpretation of this will be a probability value that reflects, with respect
to John having some height, the probability of John having that height, given
that he has been described as a man.

Of course, ‘John is a man’ will carry more information than this about John,
but let us focus on information carried about his height. We can consider the

19 Of course, given particularly skewed learning data, anomalies in individuals semantic
representations may occur. There will, nonetheless, be general patterns of use across
whole language communities. What learners are assumed to be implicitly doing is
approximating to the patterns of use in their learning communities as a whole.

20 I ignore the contribution of the indefinite article and treat this as a simple predica-
tion. I leave the modelling of quantification in this system for future research.
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range of heights John might be (given that he has been described as a man).
There will be a rationality constraint on the values ‘John is a man’ receives with
respect to John’s height. The values, must sum to 1. As a simplification, we may
think in discrete values, although a more accurate representation would be a
continuous function.

Put another way, providing different arguments of height properties for the
formula above will generate a probability distribution. Table 2 shows one possible
distribution for the height information carried by ‘John is a man’ simplified over
ranges of heights.

Table 2. Interpretation of ‘John is a man’ with respect to height.

h (cm) p(λ[ṡ](ṡ � 〈〈height=h, j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, j, yes〉〉))
h < 150 0.01

150 ≤ h < 155 0.04
155 ≤ h < 160 0.08
160 ≤ h < 165 0.12
165 ≤ h < 170 0.15
170 ≤ h < 175 0.20
175 ≤ h < 180 0.15
180 ≤ h < 185 0.12
185 ≤ h < 190 0.08
190 ≤ h < 195 0.04

h > 195 0.01

Describing John as a man, in part, conveys information about his height: that
it is fairly probable that he is around average height and highly probable that he
is neither far below nor far above average height. This relates to the assumption
that learning the classifier ‘man’, in part, involves learning, approximately, the
ranges of heights men tend to come in. This needn’t be in centimetres. It need
only be internalised in such a way as to aid, to some extent, the ability to identify
and classify whether objects in one’s environment are men.

Tall As a predicate modifier, ‘tall’, when applied to a nominal predicate, in-
creases our (reasonable) expectations of the entity (that predicate is applied to)
having a greater height. ‘Tall’ will therefore be modelled as having two jobs to do
when applied to a common noun like ‘man’: (i) it will pick out the information
carried by ‘man’ with respect to height. (ii) it will be a function on the prob-
ability distribution that ‘man’ generates with respect to heights (it will make
taller heights more probable and shorter heights less probable). In terms of a
distribution curve, for a graph with probabilities on its y-axis and heights on its
x-axis, it would shift the whole curve along the x-axis in the direction of greater
heights. The representation of ‘tall’ is given below, along with a derivation for
‘tall man’.
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tall : λ[Ṗ ](λ[ẏ](C× ftall((P . [ẏ]) . [(λ[ż](ṡ � 〈〈height=h, ż, yes〉〉)]))))

man : λ[Ṡ](λ[ẋ]((Ṡ . [ẋ] | ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)))

tall man: λ[Ṗ ](λ[ẏ](C× ftall((Ṗ . [ẏ])) . [(λ[ż]ṡ � 〈〈height=h, ż, yes〉〉)])))) .

[λ[Ṡ]λ[ẋ] (Ṡ . [ẋ] | ḋ � 〈〈utters, ȧ,MAN, ẋ, yes〉〉)]
⇒ λ[ẏ](C× ftall( λ[ṡ](ṡ � 〈〈height=h, ẏ, yes〉〉) |

λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, ẏ, yes〉〉)))

Ṗ := Parameter of type 〈〈e, p〉, 〈e, p〉〉 (functional type from situation prop-
erties to a function from individuals to [0, 1]).

C := Normalising value.
ftall := Expression of type 〈p, p〉.

The interpretation of which is a function from individuals to a probability dis-
tribution for heights of that individual, given their description as a tall man.
Whatever function on distributions ftall is, C will be interpreted as the value
that normalises the distribution.21 One possible interpretation for f tall could be
that it has the effect of shifting the distribution for ‘man’ up by 20cm or so (and
stretching it vertically).22 In Table 3, from the above toy distribution for ‘John
is a man’, we can get a toy distribution for ‘John is a tall man’.23

Table 3. Interpretation of ‘man’, and ‘tall man’ (unnormalised and normalised) with
respect to height

h (cm) p(Φ) p(ftall(Φ)) p(C× ftall(Φ))

h < 150 0.01 0.01 0.01
150 ≤ h < 155 0.04 0.01 0.01
155 ≤ h < 160 0.08 0.01 0.01
160 ≤ h < 165 0.12 0.01 0.01
165 ≤ h < 170 0.15 0.01 0.01
170 ≤ h < 175 0.20 0.02 0.02
175 ≤ h < 180 0.15 0.06 0.06
180 ≤ h < 185 0.12 0.10 0.11
185 ≤ h < 190 0.08 0.20 0.22
190 ≤ h < 195 0.04 0.30 0.32

h > 195 0.01 0.20 0.22

21 Which will be 1 over the sum of the modified distribution.
22 This could also be described by adjusting values of parameters on a Gaussian func-

tion.
23 I assume that 0.01 is the arbitrarily small value. Φ is an abbreviation for λ[ṡ](ṡ �
〈〈height=h, j, yes〉〉 | ḋ � 〈〈utters, ȧ,MAN, j, yes〉〉)
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Simply translated, being told that John is a man may carry all sorts of
information. Some of this is that he is more likely than not to be within some
margin of average height. Being told that he is tall carries the information that it
is highly probable that John is over average height. ‘tall’ selects a particular kind
of information carried by its common noun (namely information about height),
and it amplifies expectations for the upper bounds.

Importantly, after normalisation, we are simply left with a probability dis-
tribution (in the final column). Any of those values will be able to enter into
formulas for further manipulation if need be. It will be convenient to mark, in the
syntax of the formalism, that normalised distributions are mere distributions.
This can amount to a dropping of the f and C, but keeping a record of what
the normalised distribution is over. Hence, the interpretation of formulas like:

C× ftall( λ[ṡ](ṡ � 〈〈height=h, j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,MAN, j, yes〉〉))

will, interpreted, be a probability distribution over heights, which can be rewrit-
ten with an updated discourse situation:

λ[ṡ](ṡ � 〈〈height=h, j, yes〉〉) | λ[ḋ](ḋ � 〈〈utters, ȧ,TALL MAN, j, yes〉〉)

However, in doing so we must be aware that we have increased the probability
space of discourse situations. Now there are four possible discourse situation
types since John might or might not be described as a man and might or might
not be described as tall.

Green As noted in §3, modifiers like ‘green’ differ from ‘tall’: simply knowing
that something (anything) is green will give reasonable expectations about what
it is like. The way this will be modelled is that ‘green’ will also be a function
on probability distributions, but whereas ‘tall’ was informally characterised as
taking a distribution over heights and shifting it up (so that greater heights
receive higher values and lower heights, lower values), ‘green’ will contribute
something more stable to a distribution. It will select shades or hues as properties
to distribute over, but it will have the effect of always weighting the distribution
towards certain shades. For each shade that an object might be, ‘green’ provides
a weighting over our expectations for what is being referred to as being one of
those shades.

Formally, ‘green’ will look the same as ‘tall’ and the only difference will be in
the functions ftall and fgreen. Immediately below is the derivation for ‘green car’.
For some shade c, the interpretation of the above is a function from individuals
to a probability value. For different values of c, this will form a distribution.

Unlike ‘tall’, which pulls height distributions up by some factor, ‘green’ will
have a more constant character. Both functions will be of type 〈p, p〉, but whereas
ftall will has the effect of moving a distribution over heights upwards (increasing
expectation of heights), fgreen will always have the effect of flattening a distribu-
tion over shades where those shades are not usually described as green, and of
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green: λ[Ṗ ](λ[ẏ](C× fgreen((Ṗ . [y]) . [λ[ż](λ[ṡ](ṡ � 〈〈shade=c, ż, yes〉〉)]))))

car: λ[Ṡ](λ[ẋ](Ṡ . [ẋ] | λ[ḋ](ḋ � 〈〈, utters, ȧ,CAR, ẋ, yes〉〉)))
green car: λy.C× fgreen(λ[ṡ](ṡ � 〈〈shade=c, ẏ, yes〉〉) |

λ[ḋ](ḋ � 〈〈utters, ȧ,CAR, ẏ, yes〉〉))

elevating the distribution over shades that are usually described as green. The
function for ‘green’ will pull any predicate distribution it is applied to towards
the same points, namely, some range of shades. This will represent why it is more
reasonable to expect something described as ‘green’ to be some shades. This also
accounts for why ‘green’ seems to convey information on its own (about shades)
in a way that ‘tall’ does not (about heights).

5.2 Connectives

For the interpretations of two declarative statements:

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ))

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � ρ))

The interpretation of their conjunction and disjunction will be:

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ) ∧ λ[ḋ](ḋ � ρ))

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ) ∨ λ[ḋ](ḋ � ρ))

Values for which can be obtained using Bayes’ Rule.24 For example, in the
conjunction case, this would yield:

p(λ[ṡ](ṡ � σ) | λ[ḋ](ḋ � τ) ∧ λ[ḋ](ḋ � ρ)) =

p(λ[ṡ](ṡ � σ)) ∧ p(λ[ḋ](ḋ � τ) ∧ λ[ḋ](ḋ � ρ))

p(λ[ḋ](ḋ � τ) ∧ λ[ḋ](ḋ � ρ))

24 Bayes’ Rule, stated in regular notation is: P (C|A) =
P (C ∧A)

P (A)
.
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6 Vagueness

On the semantics being developed, a phenomena (one that might well be called
‘vagueness’), emerges naturally from meaning representations. If terms leave us
with U2 uncertainty, then sometimes there will be a clash between our intuitions
of whether to apply a particular term in a particular case. U2 uncertainty (un-
certainty over how to apply terms) is related to U1 uncertainty (uncertainty over
what the world is like given a description). If U1 uncertainty is graded, then there
will undoubtedly arise cases where U2 uncertainties clash: cases where we are
no more certain about applying a term than we are about applying its negation.
Furthermore, some cases of clashes will be immune to further information. One
could be in a position of full knowledge such that one knew exactly how words
were used, all of the relevant properties of the objects being described, and all
of the relevant contextual information. Nonetheless, clashes of equal uncertainty
may remain unresolved. Such situations, I contend, are plausible explanations of
so-called borderline cases.

For example, if the value for ‘John is tall’ with respect to height h is the same
as the value for ‘John is not tall’ with respect to height h, then the meaning of
‘tall’ will provide us with no more reason to judge John to be tall than to judge
him to be not tall. There is no more to know about the meaning of ‘tall’ which
will resolve this uncertainty, and there may be no more to know about John or
the context of utterance to do so either. If so, John would be a borderline case.

Probability values in the formalism can be seen to reflect reasons for making
judgements. In viewing matters this way, we can begin to get a handle on bound-
arylessness. Even if our reasons for making a ‘tall’ judgement slightly outweigh
our reasons for making a ‘not tall’ judgement, we might still not have sufficient
reason to form a categorical judgement. The extent to which the values must
differ for one or the other judgement to be true will not be a matter decided
by the semantics for ‘tall’. In this sense, nothing in the meaning representation
itself will determine a cut-off point for ‘tall’. It is due to this feature of the model
provided that we can approximate boundarylessness for vague concepts.

7 Comparison with the Literature

7.1 Lassiter’s, and Frazee and Beaver’s Epistemic Models

Although [2] and [3] describe their positions from different perspectives, they
amount to similar approaches. Lassiter’s article, though marginally later was
developed independently and is fuller in detail. I will focus on it.

Similarly to my approach, Lassiter is interested in uncertainty in commu-
nication and worried about sharp boundaries. He is less worried about truth-
conditional semantics in general, however. Rather than implementing probabil-
ities directly into the meaning representations of words, Lassiter incorporates
metalinguistic uncertainty over what is being expressed (in terms of a sharp
proposition). He also includes uncertainty about the world, but we’ll focus on
the former case.
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Lassiter inherits, from other work in the scalar adjectives literature, the idea
that their semantics should incorporate thresholds. In simple terms, he models
uncertainty about where the threshold is when a term like ‘tall’ is used. We can,
relative to a context, be pretty certain that thresholds are not too high or too
low. Lassiter models this as a distribution over precise model theoretic objects
which have sharp cut-offs. The effect is that if we learn someone’s height, we can
get a value that reflects the probability that that individual is tall.

However, Lassiter’s emphasis is not on the sharp boundaries that such a
position implies. For him (and for Frazee and Beaver), communication using
‘tall’ is about approximating, roughly, the standard in play for what would count
as tall. It is these standards that we are uncertain about when someone uses the
expression ‘tall’. However, this general picture has the effect of implying that
there is, nonetheless, a standard for ‘tall’ in every context. I have suggested
that the approximation of standards is not what is encoded by our words. This
amounts to the claim that uncertainty should enter at the level of describing
the model theoretic object, not at the level of evaluating which classical model
theoretic object is in play.

Lassiter’s account is a big improvement on standard non-probabilistic ap-
proaches. However, the fact remains that the motivation for appealing to precise
languages must still be given. If it turns out that we rarely, if ever, coordinate
sufficiently to settle on exactly where a threshold for a term for ‘tall’ should be,
then why have such thresholds written so centrally into the semantics of such
terms? We can drop precise languages and have a far more direct connection to
what our terms mean by adopting the picture proposed.

7.2 Cooper et al.’s Probabilistic Type-Theoretic Approach

Semantic learning is at the forefront of [16], which is also the closest position
to my own. I strongly suspect that the core of the two positions will be pretty
inter-definable, although there are differences of emphasis.

U1 uncertainty is uncertainty about the world, given a description of it. U1
uncertainty is, effectively, what my account describes. Arguably, Cooper et al.
focus on U2 uncertainty. U2 uncertainty is uncertainty about how to use words,
given some known or perceived way the world is. I will say more about Cooper
et al.’s formalism in a moment, but it is first worth remarking that, if modelled
as I have presented, U1 and U2 uncertainty are inter-definable. The main weight
of the meanings of utterances in my account rests on conditional probabilities of
the form p(λ[ṡ](ṡ � σ)|λ[ḋ](ḋ � τ)). In other words, the probability of the world
being some way, given a description of it. If, indeed, Cooper et al.’s account
describes U2 uncertainty, then it is possible that their results could be simulated
via the use of the alternate conditional probability: p(λ[ḋ](ḋ � τ)|λ[ṡ](ṡ � σ)) (or
the probability that some description will be used, given that the world is some
way). Importantly, given the priors p(λ[ṡ](ṡ � σ)) and p(λ[ḋ](ḋ � τ)), these two
conditional probabilities are simply ratios of each other.

Cooper et al.’s semantics uses a rich theory of types. The simple type theory
I have used provided domains for basic types. Complex types were then con-
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structed as functions of basic types. In rich type theories, types should not be
thought of in these extensional terms, but instead as something like useful ways
of classifying things [15, p. 275]. However, propositions are also types. For ex-
ample, the proposition David runs can be seen as a situation type (one in which
David runs), and is true iff there is a situation in the world in which David runs.
In [16] agents are modelled as making probabilistic judgements about classifica-
tions. Propositions are still types, but judgements reflect the probabilities that
there is a situation of the right type.

Of particular interest is how these type judgements are grounded. Central to
Cooper et al.’s account is semantic learning, a wider discussion of which features
in [19]. On their learning model, a learner is exposed to multiple situations. In
each one they make a judgement about whether the object they are shown is an
apple or not an apple. After each judgement, the oracle that models the adult
speaker gives a judgement. Initially, the learner cannot make a judgement, but
after a few exposures to adult judgements, has enough data to begin to make
judgements themselves. In Cooper et al.’s model, ‘apple’ judgements are based
on four properties (two colours and two shapes). Simplifying a little, when faced
with a new object to classify, the value of the judgement is calculated as the
conditional probability p(apple|observed properties).25 To calculate that condi-
tional probability, the learner uses priors and conditional probabilities such as
p(property|apple), both of which are estimated directly from the adult judge-
ments they have witnessed.

Translating more into my own vernacular, one could see probabilities of ‘ap-
ple’ judgements as approximating probabilities of discourse situations, and we
could see probabilities of properties as approximating probabilities of described
situations. The two stages of Cooper et al.’s learning account can then be de-
scribed with the following procedure:

(i) By directly witnessing adult speakers’ linguistic behaviour, estimate prob-
abilities of the form:
p(λ[ṡ](ṡ � 〈〈colourc, ẋ, yes〉〉)), p(λ[ṡ](ṡ � 〈〈shapes, ẋ, yes〉〉)),
p(λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉)),
p(λ[ṡ](ṡ � 〈〈colourc, ẋ, yes〉〉)|λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉)), and
p(λ[ṡ](ṡ � 〈〈shapes, ẋ, yes〉〉)|λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉)).

(ii) Use those values to calculate, of a novel object/context, the probability:
p[λ[ḋ](ḋ � 〈〈utters, ȧ,APPLE, ẋ, yes〉〉))|
λ[ṡ]ṡ � 〈〈colourc, ẋ, yes〉〉 ∧ λ[ṡ]ṡ � 〈〈shapes, ẋ, yes〉〉).

The process in (i) describes learning the kinds of meaning representations
I have proposed. Cooper et al. show how the kind of information that can be
learnt from adult speakers’ linguistic behaviour can be turned into a classifier
judgement. These judgements will not always be probability 1. The uncertainty
that < 1 judgements reflect, is, I would argue, just what I described as U2

25 Where the output judgement is decided by whether an ‘apple’ or an ‘not-apple’
judgement receives a higher value.
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uncertainty. A closer examination of the two accounts could be fruitful. It would
certainly be useful if I were simply able to adopt Cooper et al.’s learning model.

One distinct contribution the account in this paper makes is in the treatment
of adjectives. Cooper et al.’s learning account shows how a nominal like ‘apple’
could be learnt from basic colour and shape observations. I have argued that
vague modifiers should be viewed as functions on distributions given by nominal
classifiers.

8 Conclusions

Situation theory captures sentence meaning as a link between discourse situation
types and described situation types. Although the way that this idea has been
developed here differs from the situation theoretic account in many ways, the
basic spirit of the account remains. On the standard view, informational links
hold between situation types. Individuals build connections with the world via
learning (learning to decode the information carried by terms) and via commu-
nication. The reproduction of expressions for similar purposes entrenches these
relations.

On the account presented here, the meanings of expressions are correlational
informational links between discourse situation types and described situation
types that arise from patterns in language use. People connect to these correla-
tions via semantic learning, and they entrench correlations via reproduction of
language to refer to similar situations.

Vagueness naturally arises from modelling such relations probabilistically.
This can be viewed either as the boundarylessness of vague predicates achieved
by separating, or at least distancing, truth conditions from semantic represen-
tations, or as borderline cases, where the meaning of a term such as ‘tall’ can
provide competing reasons to make ‘tall’ and ‘not tall’ judgements.

However, the suggestions put forward here are rather programmatic and
many issues have remained entirely unaddressed. Nonetheless, at least for vague
terms, structured, probabilistic representations of meaning provide at least one
viable route for attempting to capture the boundarylessness that seems charac-
teristic of vagueness.
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